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Estimating Precision Using Duplicate Measurements

Nicole Pauly Hyslop and Warren H. White
Crocker Nuclear Laboratory, University of California–Davis, Davis, CA

ABSTRACT
Precision is a concept for which there is no universally
accepted metric. Reports of precision vary depending on
the formula and inclusion criteria used to calculate them.
To properly interpret and utilize reported precisions, the
user must understand exactly what the precision repre-
sents. This paper uses duplicate Interagency Monitoring
of Protected Visual Environments (IMPROVE) measure-
ments to illustrate distinctions among different ap-
proaches to reporting precision. Three different metrics
are used to estimate the precision from the relative differ-
ences between the duplicate measurements: the root
mean square (RMS), the mean absolute value, and a per-
centile spread. Precisions calculated using the RMS rela-
tive difference yield wide distributions that tend to over-
estimate most of the observed differences. Precisions
calculated using percentiles of the relative differences
yield narrower distributions that tend to fit the bulk of the
observed differences very well. Precisions calculated using
the mean absolute relative difference lie between the
other two precision estimates. All three approaches un-
derestimate the observed differences for a small percent-
age of outliers.

INTRODUCTION
Precision is defined by the International Standardization
Organization (ISO) as “the closeness of agreement between
quantity values obtained by replicate measurements of a
quantity, under specified conditions…precision is usually
expressed numerically by measures of imprecision, such
as standard deviation, variance, or coefficient of variation
under the specified conditions of measurement.”1 As
noted by the ISO definition, there is no single prescribed
formula for reporting precision. The quantitative expres-
sion of precision is subjectively chosen, and multiple is-
sues must be considered when choosing a method, in-
cluding whether to express the precision in dimensional
or nondimensional terms, what range of concentrations
to include in the precision calculations, and how to ag-
gregate measurements made under differing conditions.

These issues must be considered in the context of the
intended use of the precision.

Precision is typically expressed as a single number.
ISO suggests standard deviation (SD), variance, and coef-
ficient of variation (CV) as measures of precision, yet
these three metrics express the “closeness of agreement”
in different terms. SD and variance are dimensional quan-
tities whereas CV is a dimensionless quantity. A precision
of 0.1 g is the same as a precision of 10% for a mass of 1 g
but is an order of magnitude different at a mass of 10 g.
The choice of how to express precision is dependent on
whether the precision in the range of interest is limited by
additive or multiplicative uncertainties.

This paper will use the term “uncertainty” to describe
expected or predicted differences among multiple mea-
surements and reserve “precision” to describe the observed
differences. Expected measurement uncertainties are typ-
ically modeled using two types of uncertainty as shown in
eq 1: uncertainties that are constant throughout the range
of measurements (additive) and uncertainties that scale
with the magnitude of the measurement (multiplicative).2

Unc � Expected uncertainty � �Uncadd
2 � Uncmult

2 *C2 (1)

where Uncadd is the additive uncertainty (e.g., blank or
zero uncertainty), Uncmult is the multiplicative uncer-
tainty, (e.g., volume or analytical uncertainty), and C is
the concentration.

At low concentrations, additive uncertainties usually
dominate the overall expected uncertainty, whereas at high
concentrations, multiplicative uncertainties usually domi-

nate the total expected uncertainty and
Unc
C

� Uncmult.

The transition from one regime to the other is dependent
on the values of the additive and multiplicative uncer-
tainties. Air monitoring is usually concerned with high
concentrations and its practitioners thus express preci-
sion in relative, dimensionless terms.3–10

To obtain a stable estimate of relative precision, the
concentration range with uncertainties dominated by ad-
ditive uncertainties must be eliminated from the esti-
mates; however, exactly which concentrations to exclude
is not clear. The additive and multiplicative uncertainties
are unknown and can vary by species, site, filter lot, and
even analysis date. To avoid the complications of trying
to determine the additive and multiplicative uncertain-
ties, simple criteria based on the detection limit are often
used to exclude low concentration data. Minkkinen6 rec-
ommends using concentrations above 5–10 times the de-
tection limit, and Speciation Trends Network (STN) doc-
umentation11 specifies using only sample pairs with a

IMPLICATIONS
Measurement precisions are provided to indicate the con-
fidence that can be placed in any data analysis and the
associated decision-making. Precision values reported for
the same dataset can vary widely depending on the exact
formula and inclusion criteria used to calculate them. Ana-
lysts must be aware of the procedure used to calculate
reported precisions and how to use those precisions in their
analyses.
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mean concentration greater than 3 times the detection
limit in the precision calculations. These criteria obvi-
ously depend on the exact definition of the detection
limit, and detection limit is another concept for which
there is no universally accepted metric.12 On the basis of
the uncertainty model in eq 1, if the multiplicative un-
certainty is 10% (or 5%) and the detection limit is equal to
2 times the additive uncertainty term, the precision will
approach to within 10% of its asymptotic value above a
concentration of 10 (or 20) times the detection limit,
respectively. The precision estimates are also sensitive to
whether the threshold criterion is applied to each indi-
vidual concentration or the mean of a pair. Depending on
the measured concentrations, the selection criteria may
exclude a large or small fraction of the dataset from the
precision calculations.

Lastly, an approach for summarizing observed mea-
surement differences to compute precision must be devel-
oped. The idealized model imagines many measurements
at the same concentration C, yielding values C1, C2,…,Cn.
The differences Ci-C� are commonly assumed to follow a
normal (Gaussian) probability distribution, N(0,�), with a
mean of zero and a width parameter equal to �. The
dimensional precision is then defined as some multiple of
�, which can be estimated from the SD

� � s � �1
n�

1

n

�C1 � C� �2, (2)

and the relative precision is reported as the ratio s⁄C� . Be-
cause of the expenses involved in field studies, measure-
ment precision is often determined by only two measure-
ments (duplicates) at a time, made at multiple sites over
multiple time periods. This setup provides a more com-
prehensive evaluation across a range of concentrations
and operating conditions, as opposed to measuring a sin-
gle concentration multiple times, but complicates the
interpretation of the results because the mean value
changes for each pair of measurements. It is now the

relative differences Xi �
Ci1 � Ci2

C� i
that are assumed homo-

geneous across concentration and are modeled by the
normal distribution. Here Ci1 and Ci2 are the routine and
duplicate concentrations, Ci is the mean concentration
for measurement pair i, and the mean relative difference
is assumed to be zero, X � 0. Note that the relative
differences cannot be truly normal because the ratio must
lie between �2 and �2 for non-negative concentrations.

The � value for an assumed normal distribution can
be estimated by different statistics. For a truly normal
distribution, these different statistics yield identical � es-
timates; for a non-normal distribution, the � estimates
will vary. Observed distributions often fail statistical tests
for normality because of the presence of outliers, or
anomalously large measurement differences. Outliers
arise from sporadic errors such as contamination, inter-
ference, or mishandling, and from exceptional events
such as local source activities that cause spatial gradients.
Eliminating outliers using a statistical test is a possible
solution although decisions made using these tests can be

considered arbitrary without independent evidence to
document that the points are invalid. Alternatively, using
a more robust approach to estimate �, such as percentiles,
can also reduce the influence of outliers.

Particular statistics are more or less sensitive to devi-
ations from normality, and the appropriate statistic for
the precision calculation may vary depending on the de-
sired application. If the precision is intended to describe
differences for most of the measurements, the influence
of outliers may need to be minimized in the calculations.
If the precision is intended to reflect the maximum pos-
sible uncertainty, the outliers may need to be emphasized
in the calculations.

Data from the Interagency Monitoring of Protected
Visual Environments (IMPROVE) program are used to il-
lustrate the issues presented above. IMPROVE is a coop-
erative measurement effort in the United States designed
to characterize current visibility and aerosol conditions in
scenic areas (primarily national parks and forests) and to
identify chemical species responsible for existing man-
made visibility impairment.13–15 IMPROVE measures sus-
pended particulate matter concentrations by collecting
24-hr filter samples at approximately 170 sites every 3
days.

In this paper, the U.S. Environmental Protection
Agency (EPA) approach to estimating precision along
with two other approaches will be applied to duplicate
IMPROVE data. Our desired precision estimate is one that
describes the differences between the bulk of the pairs
well. Plots of the IMPROVE data illustrate discrepancies
between the expected uncertainty model in eq 1 and
actual duplicate measurement differences. Distributions
of the duplicate IMPROVE measurement differences are
compared with the differences modeled by the preci-
sion estimates; these plots show the effect of outliers
and other departures from normality on the precision
estimates.

DATA
In 2003 and 2004, the IMPROVE network began operating
collocated (duplicate) samplers at several sites. Precision
estimates using EPA guidelines for collocated data have
been previously published.16,17 For logistical reasons, the
entire sampler is not duplicated at the collocated sites;
instead, a single sampling train is duplicated. There are six
duplicate sampling trains of each of the four types in the
network. The four types of IMPROVE sampling trains are
referred to as A, B, C, and D modules and each one collects
a filter on the designated sampling days.18 This analysis
only uses data from the A and B modules. The A module
has a 2.5-�m cut point (PM2.5) and utilizes a Teflon filter
that is weighed for mass and analyzed by X-ray fluores-
cence (XRF) for most elements between sodium and zir-
conium. Many of the elements measured by XRF are con-
sidered trace elements and are only present at very low
concentrations. The B module has a 2.5-�m cut point and
utilizes a nylon filter, preceded by a sodium carbonate
denuder, for analysis of anions by ion chromatography—
sulfate (SO4

2�), nitrate (NO3
�), and chloride (Cl�). This

analysis uses data from the duplicate sampling sites col-
lected from 2004 through 2006. The collocated A modules
are located at Mesa Verde (MEVE) National Park (NP) in
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Colorado, Proctor Maple Research Facility (PMRF) in Ver-
mont, Olympic NP (OLYM) in Washington, Sac and Fox
Nation (SAFO) in Kansas, Trapper Creek (TRCR) in Alaska,
and Saint Marks (SAMA) in Florida. The collocated B mod-
ules are located at Lassen Volcanic NP (LAVO) in Califor-
nia, Mammoth Cave NP (MACA) in Kentucky, Big Bend
NP (BIBE) in Texas, Gates of the Mountains (GAMO) in
Montana, Frostburg Reservoir (FRRE) in Maryland, and
Blue Mounds State Park (BLMO) in Minnesota. The data
were downloaded from http://vista.cira.colostate.edu/
views in April 2008.

Figure 1 illustrates the relationships between preci-
sion and concentration for PM2.5 mass and vanadium
measurements in dimensional and dimensionless terms.
Figure 1, a and c, plot the scaled arithmetic differences
between duplicate measurement pairs, (Ci1 � Ci2)/	2,
against their mean concentration; these differences are in
dimensional terms. Figure 1, b and d, plot the scaled

relative difference, ��Ci1 � Ci2�/�2
C� 1

�, against their mean

concentration; these differences are in dimensionless
terms. The differences are divided by 	2 because they
arise from imprecision in both measurements, which adds
quadratically, and the desired result is the precision of
one measurement. The PM2.5 mass and vanadium scaled
absolute differences increase with increasing concentra-
tion, but the scaled relative differences decrease with in-
creasing concentration. Either type of differences could be

used to estimate precision, but as discussed in the intro-
duction, the scaled relative differences (Figure 1, b and d)
are commonly used in air quality work and will be used in
this paper. Figure 2 illustrates the relationships between
scaled relative difference and concentration for six more
species. The dashed vertical line in each graph in Figures
1 and 2 indicates the mean critical limit (Lc) for 2004–
2006.19 Lc is the lowest concentration that can be inter-
preted as indicating the presence of the analyte with 95%
confidence. Lc values are estimated by the 95th percentile
field blank concentrations.19 The Lc values for the ele-
ments were calculated for two groups, pre-2005 and post-
2005, because significant changes were made to the XRF
systems at the beginning of 2005. The Lc values for the
ions were determined for each filter lot. For the elements,
the Lc values are much greater than the reported mini-
mum detectable limits (MDL) provided with the IM-
PROVE data; for the ions, the Lc values are similar to the
reported MDL.

The species in Figures 1 and 2 show various relation-
ships between relative difference and concentration. The
sulfur and SO4

2� scaled relative differences appear to be
constant throughout their measurement range, whereas
the PM2.5 mass, arsenic, vanadium, and lead scaled rela-
tive differences tend to decrease with increasing concen-
tration throughout their measurement range. The cal-
cium and potassium scaled relative differences are
relatively constant throughout the measurement range,

Figure 1. (a and c) Scaled arithmetic difference, (Ci1 � Ci2)/	2, and (b and d) scaled relative difference, ��Ci1 � Ci2�/�2
C� 1

�, vs. mean

concentration for the routine and collocated measurements of (a and b) PM2.5 mass and (c and d) vanadium. The dashed vertical line indicates
Lc. The different symbols represent different monitoring sites.
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except for several data pairs from the MEVE1 site that
have unusually large differences. These different rela-
tionships illustrated in Figures 1 and 2 highlight the
difficulty of representing precision with a single num-
ber and of developing a standard method for estimating
precision.

METRICS
The individual relative differences shown in Figures 1
and 2 must be summarized to compute a single preci-
sion for each species. As discussed in the introduction,
several different statistics can be used to express the
precision. If the scaled relative differences are normally
distributed, these precision estimates will be equiva-
lent. The magnitude of the differences between the
estimates indicates the magnitude and severity of devi-
ations from normality. In this paper, the goal is to

estimate a � for a normal distribution that best de-
scribes the bulk of the observed relative differences. A
1� estimate of precision provides a concentration range
within which the concentration is expected to occur
68% of the time.

The EPA-recommended formula for calculating preci-
sion of collocated Federal Reference Method samplers
identifies � with the root mean square (RMS) of the scaled
relative differences, as shown in eq 3.13

RMS Precision � �1
n�

i � 1

n

Di
2 * 100%, where

D1 �
�Ci1 � Ci2�/�2

C� i

(3)

Figure 2. Scaled arithmetic relative differences vs. mean concentrations for the routine and collocated measurements of (a) sulfur, (b) SO4
2�,

(c) potassium, (d) calcium, (e) arsenic, and (f) lead. If the Lc falls within the range of measured concentrations, it is indicated with a dashed
vertical line. The different symbols represent different monitoring sites.
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Equation 3 is a modified version of the SD calculation
shown in eq 2 for the situation in which the measure-
ments are only repeated once. RMS precisions are sen-
sitive to deviations from normality; the sensitivity
results from the square of the differences term in the
numerator. Data pairs with large differences (outliers)
will be weighted heavily when they are squared
compared with most pairs with moderate or small
differences.

An alternative approach to determining precision
identifies � with the scaled mean absolute difference
(MAD), as shown in eq 4.

MAD Precision � �


2
1
n�

i�1

n

�Di� * 100% (4)

The �


2
factor in eq 4 arises from the relationship be-

tween the mean absolute difference and � in a normal
distribution.9 This approach does not square the differ-
ences and is therefore less sensitive to outliers. The STN
and Clean Air Status and Trends Network report preci-
sions using a metric similar to eq 4.5,20,21

A third approach is to use percentiles to determine �.
Distribution percentiles can minimize the influence of
outliers by excluding the outer edges of the distribution.
For a normal distribution, 68% of the values are within
1 SD of the mean; therefore, the precision can be esti-
mated as one-half of the range between the 16th and
84th percentiles.

Percentile Precision �
1
2

�P84�Di� � P16�Di�� * 100% (5)

P84 and P16 are the 84th and 16th percentiles in the scaled
relative difference distribution. This approach completely
ignores the outer one-third of the distribution and is
therefore the least sensitive to outliers.

The RMS and MAD precision calculations include any
bias existing in the measurements. Small biases (�3%) are
expected at individual sites as a result of operational dif-
ferences such as flow calibration. These biases are ex-
pected to be random and vary over long time scales (e.g.,
annually when new flow calibrations are performed). The
site-specific biases are expected to average out to zero in
the overall bias and precision calculations, which include six
sites over 2 yr. The mean overall bias is estimated from eq 6.

Bias �
1
n �

i�1

n

Di * 100% (6)

The criterion used to include data in the precision calcu-
lations is that both concentrations must be greater than 3
times the Lc. No further criterion is used to remove out-
lying differences from the dataset. All data above the
minimum threshold, irrespective of the validation flag,
were used in the precision calculations.

RESULTS
Table 1 shows the precision estimates based on the three
different methods shown in eqs 3–5 for the duplicate

Table 1. Three different estimates of precision for several species measured in the IMPROVE network.

Species Collocated Pair Count (n) RMS Precision (%) Mean Precision (%) Percentile Precision (%) Bias (%)

PM2.5 1488 7 5 4 2
Sodium 315 22 20 17 4
Magnesium 53 14 13 11 �3
Aluminum 600 18 15 12 7
Silicon 918 15 13 9 4
Phosphorus 13 12 12 11 �2
Sulfur 1570 7 6 5 1
Chlorine 126 22 16 12 2
Potassium 1244 9 8 6 3
Calcium 1291 16 12 8 4
Titanium 662 14 12 10 5
Vanadium 963 14 13 11 1
Manganese 1356 16 15 13 3
Iron 1207 14 11 8 4
Nickel 153 11 8 7 1
Copper 220 14 10 9 1
Zinc 306 10 8 6 1
Arsenic 597 21 21 20 2
Selenium 952 11 10 9 2
Bromine 1586 9 8 6 4
Rubidium 107 18 18 17 �1
Strontium 379 15 15 13 4
Lead 715 11 10 9 1
Cl� 72 10 8 7 0
NO3

� 1477 7 6 5 2
SO4

2� 1808 4 3 3 1

Notes: The precision estimates are based on concentrations greater than three times the critical limit.
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Figure 3. Histograms of scaled relative differences along with normal curves for three different estimates of precision based on the (1) RMS
from eq 3, (2) MAD from eq 4, and (3) half of the difference between 84th and 16th percentiles from eq 5 for PM2.5 (a) mass, (b) vanadium, (c)
sulfur, (d) SO4

2�, (e) potassium, (f) calcium, (g) arsenic, and (h) lead. The number of observed differences excluded from the graph by making
the graph range less than the data range is listed next to each label (these differences are included in the calculations).
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IMPROVE data collected from 2004 through 2006. Al-
though there are over 1500 collocated filter pairs in the
dataset, the “Collocated Pair Count” column in Table 1
illustrates that many species are rarely measured above 3
times the Lc. The three precision estimates in Table 1 are
in a consistent order for all species with the RMS preci-
sions being loosest (highest values) and percentile preci-
sions being tightest (lowest values). Throughout this dis-
cussion of precisions, the terms “tight” and “loose” are
used to qualitatively describe the precision estimates and
shape of the curves; these terms are used to avoid the
confusion of using high and low to describe a metric that
has an inverse scale (e.g., high precision is a low number).
The RMS precision estimates are sensitive to outlying
differences because the RMS equation squares the differ-
ences. Therefore, the difference between the RMS and the
other precision estimates indicates the prevalence and
severity of outlying differences. Outlying differences can
be observed for every species in Figures 1 and 2, except
possibly arsenic. The source of these outliers could be
contamination, interference, or mishandling, but there is
no way to determine the exact source.

The last column in Table 1 lists the mean bias for the
measurements (eq 6). Most of the biases are small, but
some elements, and particularly those associated with soil
(iron, silicon, aluminum, manganese, titanium, potas-
sium), have relatively large biases ranging from 3 to 7%. It
is unknown whether these bias are random or a result of
some unintentional operational difference between the
duplicate and routine samplers. The bias will inflate the
RMS and MAD precision estimates but not the percentile
precision estimates. Special measurements have been es-
tablished to further investigate these biases, but results are
not available at this time.

Figure 3 illustrates the different precisions listed in
Table 1 by showing the actual distribution of differences
as bars and the predicted distributions based on the three
precision estimates as curves. Figure 3 shows these distri-
butions for the same eight elements shown in Figures 1
and 2. The normal distribution curves are based on the
three precision estimates in eqs 3–5. The three normal
curves are centered on zero, which emphasizes that the
actual difference distributions are biased to the right (his-
tograms are not centered on zero). The RMS precisions are
consistently looser, as illustrated by the wider normal
curves. The percentile precisions are consistently tighter,
as illustrated by the narrower curves. The MAD preci-
sions consistently lie between the other two precision
estimates.

The goodness of fit of the three precision estimates
can be evaluated qualitatively using Figure 3. The RMS
precisions predict fewer measurement pairs with small
differences than are in the actual distributions; for exam-
ple, the PM2.5 RMS predicted that maximum counts are
around 220, whereas the maximum counts in the actual
distribution are over 400. This illustrates that the RMS
precisions underestimate the frequency of small differ-
ences and overestimate the frequency of larger differ-
ences. All three precision estimates fail to predict the
largest differences (outliers) observed in the data. The
percentile precision estimates tend to do the best job of
describing the most frequent measurement differences for

all of the species in Figures 2 and 3. The three precision
estimates are very similar for arsenic, indicating that
the arsenic differences are well described by a normal
distribution.

CONCLUSIONS
Precision is a concept rather than a well-defined quantity.
The goal of most precision evaluations is to characterize
the performance of most of the measurements. When
choosing a method for estimating precision, the homo-
geneity of the precision over the measurement range and
normality of the distribution of differences must be con-
sidered, along with the desired purpose of the precision
estimates. Particular methods tend to provide more or less
conservative estimates of precision. Nondimensional pre-
cision estimates based on the relative differences of mea-
surements are commonly used in the air quality field but
may not sufficiently describe the data, particularly if the
measured concentrations do not routinely exceed 5–10
times the detection limit. Outliers are hard to avoid and
predict. The RMS precision estimates place disproportion-
ate weight on these outliers and may provide poor esti-
mates of precision for more typical measurements. The
MAD and percentile precision estimates are more robust
to outliers and better fit most of the differences. More
quantitative analyses need to be performed to further
understand the goodness of fit of these three estimates.
Data users should be aware of the exact approach used
to calculate precision, particularly when comparing
published precision estimates for different monitoring
programs.
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